skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "JACKSON, STEPHEN"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses.•If$$\kappa $$is a cardinal,$$\epsilon < \kappa $$,$${\mathrm {cof}}(\epsilon ) = \omega $$,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and a$$\delta < \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if$$f \upharpoonright \delta = g \upharpoonright \delta $$and$$\sup (f) = \sup (g)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$is a cardinal,$$\epsilon $$is countable,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$holds and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the strong almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and finitely many ordinals$$\delta _0, ..., \delta _k \leq \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$0 \leq i \leq k$$,$$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\kappa _2$$,$$\epsilon \leq \kappa $$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere monotonicity property: There is a club$$C \subseteq \kappa $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$\alpha < \epsilon $$,$$f(\alpha ) \leq g(\alpha )$$, then$$\Phi (f) \leq \Phi (g)$$.•Suppose dependent choice ($$\mathsf {DC}$$),$${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$$and the almost everywhere short length club uniformization principle for$${\omega _1}$$hold. Then every function$$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$$satisfies a finite continuity property with respect to closure points: Let$$\mathfrak {C}_f$$be the club of$$\alpha < {\omega _1}$$so that$$\sup (f \upharpoonright \alpha ) = \alpha $$. There is a club$$C \subseteq {\omega _1}$$and finitely many functions$$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$$so that for all$$f \in [C]^{\omega _1}_*$$, for all$$g \in [C]^{\omega _1}_*$$, if$$\mathfrak {C}_g = \mathfrak {C}_f$$and for all$$i < n$$,$$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$$, then$$\Phi (g) = \Phi (f)$$.•Suppose$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\epsilon _2$$for all$$\epsilon < \kappa $$. For all$$\chi < \kappa $$,$$[\kappa ]^{<\kappa }$$does not inject into$${}^\chi \mathrm {ON}$$, the class of$$\chi $$-length sequences of ordinals, and therefore,$$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$$. As a consequence, under the axiom of determinacy$$(\mathsf {AD})$$, these two cardinality results hold when$$\kappa $$is one of the following weak or strong partition cardinals of determinacy:$${\omega _1}$$,$$\omega _2$$,$$\boldsymbol {\delta }_n^1$$(for all$$1 \leq n < \omega $$) and$$\boldsymbol {\delta }^2_1$$(assuming in addition$$\mathsf {DC}_{\mathbb {R}}$$). 
    more » « less
  2. Assume [Formula: see text]. If [Formula: see text] is an ordinal and X is a set of ordinals, then [Formula: see text] is the collection of order-preserving functions [Formula: see text] which have uniform cofinality [Formula: see text] and discontinuous everywhere. The weak partition properties on [Formula: see text] and [Formula: see text] yield partition measures on [Formula: see text] when [Formula: see text] and [Formula: see text] when [Formula: see text]. The following almost everywhere continuity properties for functions on partition spaces with respect to these partition measures will be shown. For every [Formula: see text] and function [Formula: see text], there is a club [Formula: see text] and a [Formula: see text] so that for all [Formula: see text], if [Formula: see text] and [Formula: see text], then [Formula: see text]. For every [Formula: see text] and function [Formula: see text], there is an [Formula: see text]-club [Formula: see text] and a [Formula: see text] so that for all [Formula: see text], if [Formula: see text] and [Formula: see text], then [Formula: see text]. The previous two continuity results will be used to distinguish the cardinalities of some important subsets of [Formula: see text]. [Formula: see text]. [Formula: see text]. [Formula: see text]. It will also be shown that [Formula: see text] has the Jónsson property: For every [Formula: see text], there is an [Formula: see text] with [Formula: see text] so that [Formula: see text]. 
    more » « less
  3. Abstract Schmidt’s game and other similar intersection games have played an important role in recent years in applications to number theory, dynamics, and Diophantine approximation theory. These games are real games, that is, games in which the players make moves from a complete separable metric space. The determinacy of these games trivially follows from the axiom of determinacy for real games, $$\mathsf {AD}_{\mathbb R}$$ , which is a much stronger axiom than that asserting all integer games are determined, $$\mathsf {AD}$$ . One of our main results is a general theorem which under the hypothesis $$\mathsf {AD}$$ implies the determinacy of intersection games which have a property allowing strategies to be simplified. In particular, we show that Schmidt’s $$(\alpha ,\beta ,\rho )$$ game on $$\mathbb R$$ is determined from $$\mathsf {AD}$$ alone, but on $$\mathbb R^n$$ for $$n \geq 3$$ we show that $$\mathsf {AD}$$ does not imply the determinacy of this game. We then give an application of simple strategies and prove that the winning player in Schmidt’s $$(\alpha , \beta , \rho )$$ game on $$\mathbb {R}$$ has a winning positional strategy, without appealing to the axiom of choice. We also prove several other results specifically related to the determinacy of Schmidt’s game. These results highlight the obstacles in obtaining the determinacy of Schmidt’s game from $$\mathsf {AD}$$ . 
    more » « less
  4. Abstract Assume $$\mathsf {ZF} + \mathsf {AD}$$ and all sets of reals are Suslin. Let $$\Gamma $$ be a pointclass closed under $$\wedge $$ , $$\vee $$ , $$\forall ^{\mathbb {R}}$$ , continuous substitution, and has the scale property. Let $$\kappa = \delta (\Gamma )$$ be the supremum of the length of prewellorderings on $$\mathbb {R}$$ which belong to $$\Delta = \Gamma \cap \check \Gamma $$ . Let $$\mathsf {club}$$ denote the collection of club subsets of $$\kappa $$ . Then the countable length everywhere club uniformization holds for $$\kappa $$ : For every relation $$R \subseteq {}^{<{\omega _1}}\kappa \times \mathsf {club}$$ with the property that for all $$\ell \in {}^{<{\omega _1}}\kappa $$ and clubs $$C \subseteq D \subseteq \kappa $$ , $$R(\ell ,D)$$ implies $$R(\ell ,C)$$ , there is a uniformization function $$\Lambda : \mathrm {dom}(R) \rightarrow \mathsf {club}$$ with the property that for all $$\ell \in \mathrm {dom}(R)$$ , $$R(\ell ,\Lambda (\ell ))$$ . In particular, under these assumptions, for all $$n \in \omega $$ , $$\boldsymbol {\delta }^1_{2n + 1}$$ satisfies the countable length everywhere club uniformization. 
    more » « less
  5. Abstract We consider the complexity of special $$\alpha $$ -limit sets, a kind of backward limit set for non-invertible dynamical systems. We show that these sets are always analytic, but not necessarily Borel, even in the case of a surjective map on the unit square. This answers a question posed by Kolyada, Misiurewicz, and Snoha. 
    more » « less
  6. We introduce the notion of [Formula: see text]-determinacy for [Formula: see text] a pointclass and [Formula: see text] an equivalence relation on a Polish space [Formula: see text]. A case of particular interest is the case when [Formula: see text] is the (left) shift-action of [Formula: see text] on [Formula: see text] where [Formula: see text] or [Formula: see text]. We show that for all shift actions by countable groups [Formula: see text], and any “reasonable” pointclass [Formula: see text], that [Formula: see text]-determinacy implies [Formula: see text]-determinacy. We also prove a corresponding result when [Formula: see text] is a subshift of finite type of the shift map on [Formula: see text]. 
    more » « less